Phosphorylation of the postsynaptic density-95 (PSD-95)/discs large/zona occludens-1 binding site of stargazin regulates binding to PSD-95 and synaptic targeting of AMPA receptors.
نویسندگان
چکیده
Dynamic regulation of AMPA-type receptors at the synapse is proposed to play a critical role in alterations of the synaptic strength seen in cellular models of learning and memory such as long-term potentiation in the hippocampus. Stargazin, previously identified as an AMPA receptor (AMPAR)-interacting protein, is critical for surface expression and synaptic targeting of AMPARs. Stargazin interacts with postsynaptic density-95/discs large/zona occludens-1 (PDZ) proteins via a C-terminal PDZ binding motif. Interestingly, the C terminal of stargazin also predicts phosphorylation at a threonine residue critical for PDZ protein binding. Because protein phosphorylation regulates synaptic plasticity, we characterized this site and the effects of stargazin phosphorylation on AMPAR function. In vitro peptide phosphorylation assays and Western blot analysis with phospho-stargazin-specific antibodies indicate that the critical threonine within the stargazin PDZ binding site is phosphorylated by protein kinase A. This phosphorylation disrupts stargazin interaction and clustering with postsynaptic density-95 (PSD-95) in transfected COS-7 cells. Furthermore, a stargazin construct with a Thr-to-Glu mutation that mimics phosphorylation fails to cluster at synaptic spines and downregulates synaptic AMPAR function in cultured hippocampal neurons. These data suggest that phosphorylation of the stargazin PDZ ligand can disrupt stargazin interaction with PSD-95 and thereby regulate synaptic AMPAR function.
منابع مشابه
Postsynaptic density protein-95 regulates NMDA channel gating and surface expression.
NMDA receptors (NMDARs) colocalize with postsynaptic density protein-95 (PSD-95), a multivalent synaptic scaffolding protein and core component of the postsynaptic density, at excitatory synapses. Although much is known about the identity and properties of scaffolding proteins, little is known about their actions on NMDAR function. Here we show that association of PSD-95 with NMDARs modulates c...
متن کاملPostsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity.
The regulated delivery of AMPA-type glutamate receptors (AMPARs) to synapses is an important mechanism underlying synaptic plasticity. Here, we ask whether the synaptic scaffolding protein PSD-95 (postsynaptic density 95) participates in AMPAR incorporation during two forms of synaptic plasticity. In hippocampal slice cultures, the expression of PSD-95-green fluorescent protein (PSD-95-GFP) inc...
متن کاملThe Interaction between Stargazin and PSD-95 Regulates AMPA Receptor Surface Trafficking
Accumulation of AMPA receptors at synapses is a fundamental feature of glutamatergic synaptic transmission. Stargazin, a member of the TARP family, is an AMPAR auxiliary subunit allowing interaction of the receptor with scaffold proteins of the postsynaptic density, such as PSD-95. How PSD-95 and Stargazin regulate AMPAR number in synaptic membranes remains elusive. We show, using single quantu...
متن کاملStargazin and other transmembrane AMPA receptor regulating proteins interact with synaptic scaffolding protein MAGI-2 in brain.
The spatial coordination of neurotransmitter receptors with other postsynaptic signaling and structural molecules is regulated by a diverse array of cell-specific scaffolding proteins. The synaptic trafficking of AMPA receptors by the stargazin protein in some neurons, for example, depends on specific interactions between the C terminus of stargazin and the PDZ [postsynaptic density-95 (PSD-95)...
متن کاملDirect interactions between PSD-95 and stargazin control synaptic AMPA receptor number.
Excitatory synapses in the brain exhibit a remarkable degree of functional plasticity, which largely reflects changes in the number of synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). However, mechanisms involved in recruiting AMPARs to synapses are unknown. Here we use hippocampal slice cultures and biolistic gene transfections to study the targeting of AMP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 14 شماره
صفحات -
تاریخ انتشار 2002